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Applying Parikh’s quantum tunneling method, the tunneling characteristics of stationary
Kaluza-Klein black hole is researched. The result shows that the tunneling rate across
the event horizon of the black hole is relevant to the change of Bekenstein-Hawking
entropy and the derived radiation spectrum deviates from pure thermal when the self-
gravitation, energy conservation and angular momentum conservation are taken into
consideration. Finally, we use the obtained results to reduce to stationary Kerr black hole
and static Swarzschild black hole, and find that only ignoring the spectrum at higher
energies the tunneling radiation spectrum is consistent with Hawking pure thermal one.
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1. INTRODUCTION

In 1970s, Hawking discovered and proved the thermal radiation of black hole,
which is greatly meaningful to research the evolution of the fixed stars (Hawking,
1975). Since then, black hole thermodynamic properties have been researched by
a lot of people. There are two methods to research Hawking radiation, namely
quantum field theory method and Damour-Ruffini method (Damour and Ruffini,
1976). In the past few decades, people have applied the two methods to carry on
a series of research on Hawking radiation of static, stationary and non-stationary
black holes (Zhang and Zhao, 2002; Liu and Xu, 2002; Jiang et al., 2005; Wu
and Cai, 2000; Xu, 1982; Yang and Lin, 2001). But the similarities between the
two methods are that the space-time background is fixed and the derived thermal
spectrum is pure thermal. So in the process of solving Hawking thermal spectrum,
there are two points worth discussing: first, the information lost, which means the
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pure quantum state will be reduced to the mixture, using the language of quantum
field theory, the ingoing state is pure and the outgoing is mixture, which disobeys
the underling unitary theory. Secondly, the technical problem, we have learned
that black hole radiation is the result of quantum tunneling effect at present, but
till now, the causes of the tunneling barrier are indistinct for us. The related
references do not use the language of the quantum tunneling to discuss Hawking
thermal radiation, so strictly speaking, it is not the quantum tunneling method.

Recently, Parikh has present a quantum tunneling model and carried out a
research on the tunneling radiation of Schwarzschild black hole and Reissner-
Nordström black hole by using a coordinate system well-behaved at the event
horizon (Parikh, 2004; Parikh and Wiltzek, 2000; Parikh, 2004). The result shows
the radiation spectrum is not pure thermal under the consideration of the energy
conservation and the background spacetime unfixed and the tunneling barrier is
the result of the particle’s self-gravitation. Thus we can get a new method to study
Hawking radiation. The paper advances Parikh’s method and discusses the tun-
neling characteristics of stationary Kaluza-Klein black hole. Due to the angular
speed of the black hole � �= 0, the discussion is different from Parikh’s. This is a
subject that is worth studying but not be studied at present. Through calculating
the tunneling rate, we derive the corrected spectrum of Kaluza-Klein black hole.
The result indicates that Hawking radiation spectrum is not strictly exact one of
the black hole, considering energy conservation, angular momentum conserva-
tion and self-gravitation, the tunneling radiation spectrum is connected with the
change of Bekenstein-Hawking entropy and acts as a correction to Hawking radi-
ation spectrum. Finally, we use the obtained results to reduce to stationary Kerr
black hole and static Swarzschild black hole. The outline of the paper is organized
as follows. In Section 2, we give out the event horizon and infinite red-shift surface
of Kaluza-Klein black hole; In Section 3, Hawking pure thermal spectrum in the
dragging coordinate system from Klein-Gordon equation is researched; Subse-
quently, in order to eliminate the coordinate singularity and make space in radial
flat Eulidean to constant-time slices, we introduce general Painlevé coordinate
transformation; In Section 5, we discuss the tunneling radiation characteristics
of Kaluza-Klein black hole; Finally, in special cases, we reduce the results to
stationary Kerr black hole and static Swarzschild black hole and obtain that the
tunneling radiation spectrum is truly exact, only ignoring the spectrum at higher
energies, and the tunneling radiation spectrum is consistent with Hawking pure
thermal one.

2. THE EVENT HORIZON AND INFINITE RED-SURFACE
OF KALUZA-KLEIN BLACK HOLE

According to Wang (2004), the line element of Kaluza-Klein black hole can
be written in the following form
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ds2 = −1 − Z

B
dt2

kk − 2aZ sin2 θ

B
√

1 − ν2
dtkdϕ

+
[
B(r2 + a2) + a2 sin2 θ

Z

B

]
sin2 θdϕ2 + B�

�r

dr2 + B�dθ2 (1)

where

Z = 2mr

�
,B =

(
1 + ν2Z

1 − ν2

)1/2

� = r2 + a2 cos2 θ,�r = r2 + a2 − 2mr.

(2)
tkk is the coordinate time of Kaluza-Klein black hole, a and ν are the angular
momentum of the unit mass and the velocity respectively. The total mass M ,
charge Q and angular momentum Jm of the black hole are given by

M = m

[
1 + ν2

2(1 − ν2)

]
, Q = mν

1 − ν2
, Jm = ma√

1 − ν2
. (3)

From the null super-surface equation

gµν ∂f

∂xµ

∂f

∂xν
= 0, (4)

we can get the event horizons of the black hole

r± = m ±
√

m2 − a2 = 2(1 − ν2)

2 − ν2
M ±

√[
2(1 − ν2)

2 − ν2

]2

M2 − a2. (5)

We demand a constant-time slice and r = r+ in Eq. (1), the new line element can
be written

dσ 2 = B(r2
+ + a2 cos2 θ )dθ2 +

[
B(r2

+ + a2) + a2 sin2 θ
Z

B

]
sin2 θdϕ2, (6)

the determinant of the above two dimensional line element is

g = 1

1 − ν2
(r2

+ + a2) sin2 θ. (7)

So the surface area of the black hole can be expressed as

A+ =
∫ √

gdθdϕ = 4π√
1 − ν2

(r2
+ + a2)

= 8π√
1 − ν2

⎧⎨
⎩
[

2(1 − ν2)

2 − ν2

]2

M2 + 2(1 − ν2)

2 − ν2
M

√[
2(1 − ν2)

2 − ν2

]2

M2 − a2

⎫⎬
⎭ .

(8)
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The infinite red-shift surfaces are given by the equation g00 = 0, so we can get the
infinite red-shift surfaces

rs
± = m ±

√
m2 − a2 cos2 θ = 2(1 − ν2)

2 − ν2
M ±

√[
2(1 − ν2)

2 − ν2

]2

M2 − a2 cos2 θ.

(9)
Obviously, the event horizons and the infinite red-shift surfaces are not coincident
with each other, and there is a energy layer between them. In order to eliminate it,
making the dragging coordinate transformation

ϕ̇ = dϕ

dtkk

= −g03

g33
, (10)

the line element (1) can be transformed as follows

ds2 = ĝ00dt2
kk + B�

�r

dr2 + B�dθ2, (11)

where

ĝ00 = g00 − g2
03

g33
= − B��r (1 − ν2)

(r2 + a2)2 − �r (a2 sin2 θ + ν2�)
. (12)

In fact, the line element (11) represents a 3-dimensional hyper-surface in
4-dimensional Kaluza-Klein space-time. So the event horizon and the infinite
red-shift surface in the dragging coordinate system satisfy

r± = rs
± = 2(1 − ν2)

2 − ν2
M ±

√[
2(1 − ν2)

2 − ν2

]2

M2 − a2 (13)

so, the infinite red-shift surface and the event horizon in the dragging coordinate
system are coincident with each other.

3. HAWKING PURE THERMAL SPECTRUM OF KALUZA-KLEIN
BLACK HOLE IN THE DRAGGING COORDINATE SYSTEM

Now, Let us move on to discuss Hawking pure thermal spectrum in the
dragging coordinate system from Klein-Gordon equation. From Eq. (11), we can
obtain the components of non-null inverse metric tensor

g = − B3�3(1 − ν2)

(r2 + a2)2 − �r (a2 sin2 θ + ν2�)
, g11 = �r

B�
, g22 = 1

B�
(14)

ĝ00 = g00 = − (r2 + a2)2 − �r (a2 sin2 θ + ν2�)

B��r (1 − ν2)
.



Correction to Hawking Pure Thermal Spectrum of Stationary 1761

For the sake of simplicity, we consider Hawking radiation of the uncharged scalar
particles. In the curved space-time, Klein-Gordon equation can be expressed as

1√−g

∂

∂xµ

(√−ggµν ∂

∂xν



)
− u2
 = 0, (15)

substituting Eq. (14) into Eq. (15), we can obtain

ĝ00 ∂2


∂t2
kk

+ g11 ∂2


∂r2
+ 1√−g

∂


∂r

∂

∂r
(
√−gg11)

+ g22 ∂2


∂θ2
+ 1√−g

∂


∂θ

∂

∂θ
(
√−gg22) − u2
 = 0. (16)

Carrying on the separation variable to Eq. (16) in the following form


 = R(r)�(θ )eiςϕ−iωtkk , (17)

and considering the dragging coordinate transformation (10), we can obtain the
following expression (Zhang and Zhao, 2005)

g11 d2R(r)

dr2
+ R(r)

�(θ )

[
g22 d2�(θ )

dθ2
+ 1√−g

∂

∂θ
(
√−gg22)

d�(θ )

dθ

]

+ 1√−g

∂

∂r
(
√−gg11)

dR(r)

dr
=
[
u2 +

(
ω + ς

g03

g33

)2

g00

]
R(r).

(18)

Introducing the tortoise coordinate transformation

r∗ = 1

2κ
In(r − r+) (19)

where κ = (r+−r−)
√

1−ν2

2(r2++a2)
, is the surface gravity of the event horizon, Eq. (18) will

be transformed into the following form

d2R(r)

dr2∗
− 2κ

dR(r)

dr∗
+ 2κ (r − r+)

[
1√−g

∂

∂r
(
√−g) + 1

g11

∂g11

∂r

]
dR (r)

dr∗

+ 4κ2 (r − r+)2

g11

R (r)

� (θ )
×
[
g22 d2� (θ )

dθ2
+ 1√−g

∂

∂θ
(
√−gg22)

d� (θ )

dθ

]

= 4κ2 (r − r+)2

g11

[
u2 +

(
ω + ς

g03

g33

)2

g00

]
R (r) . (20)
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In the vicinity of the event horizon, namely r → r+, we have

4κ2 (r − r+)2

g11

[
u2 +

(
ω + ς

g03

g33

)2

g00

]
R (r) = − (ω − ς�+)2 R (r) , (21)

substituting Eq. (21) into Eq. (20), we can get the standard wave equation near the
stationary Kaluza-Klein black hole

d2R (r)

dr2∗
+ (ω − ς�+)2 R (r) = 0, (22)

where �+ is the dragging angular velocity at the event horizon. Solving Eq. (22)
can we obtain the radial wave function of uncharged particles ingoing and outgoing
the stationary Kaluza-Klein black hole


in = e−iωv, 
out = e−iωve2i(ω−ω0)r∗ , (23)

where v = tkk + ω−ω0
ω

r∗ is the advanced Eddington-Finkelstein coordinate. 
out

can be written as follows near the event horizon


out = e−iωv (r − r+)i(ω−ω0)/κ , (24)

so 
in is analytical on the event horizon, while 
out has a logarithm singularity.
By analytical continuation rotating −π through the lower-half complex r-plane

(r → r+) → |r − r+|e−iπ = (r+ − r) e−iπ , (25)

and using the Damour-Ruffini stretch method of analysis, and extending it to the
inside of the event horizon, we can get the spectrum of the Hawking radiation

Nω = 1

e(ω−ς�+)/T − 1
= 1

eξA+ − 1
≈ e−ξA+ , (26)

where A+ is the surface area of the black hole, and

T = κ

2π
= 1

4π

√
1 − ν2

√
[2(1 − ν2)/(2 − ν2)]2M2 − a2

[2(1 − ν2)/(2 − ν2)]2M2 + [2(1 − ν2)/(2 − ν2)]M
√

[2(1 − ν2)/(2 − ν2)]2M2 − a2

ξ = (ω − ς�+)

2
√

[2(1 − ν2)/(2 − ν2)]2M2 − a2
. (27)

From Eq. (26), we can learn that Hawking radiation spectrum can also be obtained
in the dragging coordinate system, and the fixed space-time background results in
the derived pure thermal spectrum. In fact, the mass of the black hole varies with
its emission, and the event horizon also changes under the consideration of energy
conservation and angular momentum conservation, which leads to the space-time
background unfixed. In the following section, we will discuss Hawking tunneling
radiation in the dragging coordinate system.



Correction to Hawking Pure Thermal Spectrum of Stationary 1763

4. PAINLEVÉ-KALUZA-KLEIN COORDINATES

It is necessary to eliminate the coordinate singularity to analyze the Hawking
tunneling radiation. From Eq. (11), the new line element in the dragging coordinate
system still exists the coordinate singularity at the event horizon and it is not flat
Eulidean space in radial to constant-time slices. So we further perform general
Painlevé coordinate transformation (Zhang and Zhao, 2005; Painleve and Hebd,
1921)

dtkk = dt + F (r, θ ) dr + G (r, θ ) dθ, (28)

where F (r, θ ) and G (r, θ ) are two to be determined functions of r and θ , and the
integrability condition of Eq. (28) is

∂F (r, θ )

∂θ
= ∂G (r, θ )

∂r
, (29)

Substituting Eq. (28) into Eq. (11), we have

ds2 = ĝ00dt2 + 2ĝ00F (r, θ ) dtdr + [ĝ00F
2 (r, θ ) + B��−1

r ]dr2

+[ĝ00G
2 (r, θ ) + B�]dθ2

+2ĝ00F (r, θ ) G (r, θ ) drdθ + 2ĝ00G (r, θ ) dtdθ, (30)

where the new time coordinate can be expressed as

t = tkk −
∫

F (r, θ )dr + G (r, θ ) dθ. (31)

Considering Flat Euclidean space in radial and setting

ĝ00F
2 (r, θ ) + B��−1

r = 1, (32)

we have

F (r, θ ) = ±
√(

1 − B��−1
r

)
/ĝ00. (33)

Considering Hawking tunneling radiation of uncharged particles occurred at the
event horizon of Kaluza-Klein black hole, so Eq. (33) should be chosen the sign +.
Then substituting Eq. (33) into Eq. (30), we obtain the Painlevé-Kaluza-Klein line
element

ds2 = ĝ00dt2 + 2
√

ĝ00
(
1 − B��−1

r

)
dtdr + dr2 + [ĝ00G

2 (r, θ ) + B�]dθ2

+ 2
√

ĝ00
(
1 − B��−1

r

)
G (r, θ ) drdθ + 2ĝ00G (r, θ ) dtdθ. (34)
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According to Landau’s condition of coordinate clock synchronization (Landau
and Lifshitz, 1975)

∂

∂xi

(
−g0j

ĝ00

)
= ∂

∂xj

(
− g0i

ĝ00

)
, (35)

we have

∂F (r, θ )

∂θ
= ∂G (r, θ )

∂r
, (36)

the condition is in accordance with Eq. (29), so the Painlevé-Kaluza-Klein coor-
dinate system satisfy Landau’s condition of coordinate synchronization. That is to
say, we can define the coordinate clock synchronization in the Painlevé-Kaluza-
Klein coordinate system.

The Painlevé-Kaluza-Klein coordinate system has a attractive features. First,
coordinate singularity at the event horizon does not exist. Second, the infinite
red-shift surface is in coincidence with the event horizon. Third, space-time is
stationary. Fourth, constant-time slices are just flat Euclidean space in radial.
Fifth, it satisfies Landau’s condition of coordinate synchronization.

Considering the uncharged particle’s radial motion and tunneling from the
event horizon as an ellipsoid shell, the particle should be still an ellipsoid shell
during the tunneling process to conserve the symmetry of the Kaluza-Klein space-
time. So from Eq. (34), radial null geodesics equation are given as

ṙ = dr

dt
= [±B� − √

B� (B� − �r )]
√

1 − ν2√
(r2 + a2)2 − �r (a2 sin2 θ + ν2�)

, (37)

where the sign + corresponds to an outgoing geodesic and the sign − corresponds
to an ingoing geodesic respectively.

5. THE TUNNELING RADIATION CHARACTERISTICS

Now, Let’s move on to discuss the tunneling radiation characteristics of
Kaluza-Klein black hole. For the sake of simplicity, we only consider the tunneling
radiation of uncharged particles. In our discussion, we can consider the picture of
a pair of virtual particles spontaneously created inside the horizon, the positive
energy virtual particle can tunnel out and the negative energy particle is absorbed
by the black hole. Taking the particle’s self-gravitation, energy conservation,
angular momentum conservation, and the tunneling particle as a shell (an ellipsoid
shell) of energy ω′ and angular momentum ω′a into account, when the particle
is tunneled out as an ellipsoid shell, fixing the total mass and angular momentum
of the space-time and allowing those of the black hole to fluctuate, then the mass
and the angular momentum of the black hole will be replaced by (M − ω′) and
(M − ω′)a respectively. Meanwhile the event horizon will shrink, we refer to the



Correction to Hawking Pure Thermal Spectrum of Stationary 1765

cases pre- and post shrinking as two turning points of potential barrier, the distance
between the two turning points is the width of potential barrier and decided by
the energy of outgoing particle. At this critical moment, the mass parameter M in
radial null geodesics (37) and the Painlevé-Kaluza-Klein line element (34) will be
replaced by (M − ω′) and the event horizon can be written as

r ′
+ = 2(1 − ν2)

2 − ν2
(M − ω′) +

√[
2(1 − ν2)

2 − ν2

]2

(M − ω′)2 − a2, (38)

and the dragging angular velocity at the event horizon of the black hole

�′
+ = a

√
1 − ν2

(r ′+)2 + a2

= a
√

1 − ν2

2

[
2(1 − ν2)

(2 − ν2)

]2

(M − ω′)2 + 2

[
2(1 − ν2)

(2 − ν2)

]
(M − ω′)

√[
2(1 − ν2)

(2 − ν2)

]2

(M − ω′)2 − a2

.

(39)

As the event horizon is in coincidence with the infinite red-shift surface,
the geometrical optics limit is approximately reliable. According to the WKB
approximation, the tunneling rate and the action of the particle satisfy (Kraus and
Keski-Vakkuri, 1997; Kraus and Parentani, 2000)

� ∼ e−2Im S (40)

where S is the action of the particle, and

S =
tf∫

ti

L (r, ṙ, ϕ, ϕ̇, t)dt, (41)

where L (r, ṙ, ϕ, ϕ̇, t) is the Lagrangian function. In Eq. (34), the coordinate ϕ is
not existed, that is to say, ϕ is an ignorable coordinate in Lagrangian function. In
order to eliminate the freedom of ϕ, the action of the particle can be expressed as

S =
tf∫

ti

(L − pϕϕ̇)dt, (42)

so the imaginary part of the action can be expressed as

Im S = Im

⎡
⎣

rf∫
ri

prdr −
ϕf∫

ϕi

pϕdϕ

⎤
⎦ = Im

⎡
⎣

rf∫
ri

pr∫
0

dp′
rdr −

rf∫
ri

pϕ∫
0

ϕ̇dp′
ϕ

ṙ
dr

⎤
⎦ (43)



1766 Jiang, Yang, and Li

According to Hamilton equation, we have

ṙ = dH

dpr

∣∣∣∣
(r;ϕ;pϕ)

= d(M − ω′)
dpr

= −dω′

dpr

,

ϕ̇ = dH

dpϕ

∣∣∣∣
(r;ϕ;pr )

= a�′
+

d
(
M − ω′)
dpϕ

= −a�′
+

dω′

dpϕ

. (44)

Substituting Eq. (44) into Eq. (43), we have

Im S = Im

⎡
⎣

M−ω∫
M

rf∫
ri

dr

ṙ
d
(
M − ω′)−

M−ω∫
M

rf∫
ri

a�′
+

dr

ṙ
d
(
M − ω′)

⎤
⎦ . (45)

Considering Eq. (37), and noting that we must replace M with M − ω′ and choose
the + sign, we obtain

ImS = Im⎡
⎣

M−ω∫
M

rf∫
ri

(1 − a�′
+)

√
(r2 + a2)2 − �′

r (a2 sin2 θ + ν2�)

[B� −√
B�(B� − �′

r )]
√

1 − ν2
drd(M − ω′)

⎤
⎦ ,

(46)

where

�′
r = r2 + a2 − 2

[
2(1 − ν2)

2 − ν2

]
(M − ω′) = (r − r ′

+)(r − r ′
−), (47)

r ′
− = 2(1 − ν2)

2 − ν2
(M − ω′) −

√[
2(1 − ν2)

2 − ν2

]2

(M − ω′)2 − a2, (48)

ri = 2(1 − ν2)

2 − ν2
M +

√[
2(1 − ν2)

2 − ν2

]2

M2 − a2, (49)

rf = 2(1 − ν2)

2 − ν2
(M − ω) +

√[
2(1 − ν2)

2 − ν2

]2

(M − ω)2 − a2. (50)

We multiply and divide the integrand with B� +√
B�(B� − �′

r ) to obtain

ImS = Im

⎡
⎢⎢⎢⎣

M−ω∫
M

rf∫
ri

(1−a�′
+)

√
(r2 + a2)2 − �′

r (a2 sin2 θ + ν2�)[
B� +√

B�(B� − �′
r )
]

B�
√

1 − ν2(r − r ′+)(r − r ′−)
drd(M − ω′)

⎤
⎥⎥⎥⎦

(51)
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Obviously, in the vicinity of the event horizon, r = r ′
+ is a pole. Doing the r

integral first we have

Im S =
M−ω∫
M

− 2π√
1 − ν2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√[
2(1 − ν2)

2 − ν2

]2

(M − ω′)2 − a2

+
[

2(1 − ν2)

2 − ν2

]
(M − ω′) + a2/2√[

2(1 − ν2)

2 − ν2

]
(M − ω′)2 − a2

+ a2/2(1 − √
1 − ν2)√[

2(1 − ν2)

2 − ν2

]
(M − ω′)2 − a2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

d(M − ω′). (52)

Finishing the integration, and carrying on integrality on (M − ω′), we obtain

ImS = π√
1 − ν2

[
2(1 − ν2)

2 − ν2

]2
⎧⎨
⎩M2 − (M − ω)2 +

[
(2 − ν2)

2(1 − ν2)

]
M

√[
2(1 − ν2)

2 − ν2

]2

M2 − a2

−
[

(2 − ν2)

2(1 − ν2)

]
(M − ω)

√[
2(1 − ν2)

2 − ν2

]2

(M − ω)2 − a2 − a2(1 −
√

1 − ν2)

×In

[
2(1 − ν2)

/
(2 − ν2)

]
(M − ω) +

√[
2(1 − ν2)

/
(2 − ν2)

]2
(M − ω)2 − a2

[
2(1 − ν2)

/
(2 − ν2)

]
M +

√[
2(1 − ν2)

/
(2 − ν2)

]2
M2 − a2

⎫⎬
⎭ .

(53)

Contrasted to the total mass of the black hole M , the energy of the emission
particle ω can be omitted, when α is a real, and is given as follows

α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎣
[
2(1 − ν2)

/
(2 − ν2)

]
(M − ω) +

√[
2(1 − ν2)

/
(2 − ν2)

]2
(M − ω)2 − a2

[
2(1 − ν2)

/
(2 − ν2)

]
M +

√[
2(1 − ν2)

/
(2 − ν2)

]2
M2 − a2

⎤
⎦

2πa2 (1−
√

1−ν2 )√
1−ν2

[
2(1−ν2 )

2−ν2

]2
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−1

(54)

we can learn that α ∼ 1. So the relationship between the tunneling rate and the
action of the particle satisfies

� ∼ exp (−2ImS) ∼ α exp (−2ImS) , (55)
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The tunneling rate of outgoing particles is

� ∼ exp

{
−2π√
1 − ν2

[
2(1 − ν2)

2 − ν2

]2 (
M2 − (M − ω)2 +

[
(2 − ν2)

2(1 − ν2)

]

×M

√[
2(1 − ν2)

2 − ν2

]2

M2 − a2 −
[

(2 − ν2)

2(1 − ν2)

]
(M − ω)

×
√[

2(1 − ν2)

2 − ν2

]2

(M − ω)2 − a2

)}
= exp

(
A′

+
4

− A+
4

)

= exp[SBH(M − ω) − SBH(M)] = exp(�SBH). (56)

where SBH is Bekenstein-Hawking entropy of stationary Kaluza-Klein black hole,
�SBH = SBH (M − ω) − SBH (M) is the difference of the entropies of the black
hole before and after the emission. Thus the tunneling spectrum of Kaluza-Klein
black hole is not pure thermal. This result obviously consists with an underlying
unitary theory and is a good correction to Hawking pure thermal spectrum.

6. DISCUSSION

When ν = 0, stationary Kaluza-Klein black hole will be reduced to stationary
Kerr black black hole. Taking self-gravitation action, energy conservation and
angular momentum conservation into account, the event horizon responding to
the cases pre- and post shrinking are given by

rK
+ = M +

√
M2 − a2, r ′K

+ = (M − ω) +
√

(M − ω)2 − a2, (57)

accordingly, the areas of the black hole are

AK
+ = 4π [(rK

+ )2 + a2] = 8π (M2 + M
√

M2 − a2),

A′K
+ = 4π [(r ′K

+ )2 + a2] = 8π [(M − ω)2 + (M − ω)
√

(M − ω)2 − a2]. (58)

From Eq. (26), we can get Hawking pure thermal spectrum

Nω = 1

e(ω−ω0)/TK − 1
, (59)

where

ω0 = ς�K
+ = ςa

2M2 + 2M
√

M2 − a2
, (60)

TK = 1

4π

√
M2 − a2

M2 + M
√

M2 − a2
, (61)
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According to the derived tunneling rate across the event horizon of Kaluza-Klein
black hole, we can obtain that of Kerr black hole

�K ∼ e−2π[M2−(M−ω)2+M
√

M2−a2−(M−ω)
√

(M−ω)2−a2]

= e(
A′K+

4 − AK+
4 ) = e

[SK

BH
(M−ω)−SK

BH
(M)] = e�SK

BH , (62)

where SK
BH

is Bekenstein-Hawking entropy of stationary Kerr black hole. According
to Zhang and Zhao (2005), expand �SK

BH in (ω − ω0) and neglect the higher-order
term, and we have

�K ∼ e�SBH = e
− 1

TK
(ω−ω0)[1− (rK+ )2+a2

(rK+ )4
(M+√

M2−a2− Ma2

2(M2−a2)
)(ω−ω0)]

. (63)

From Eqs. (59) and (63), we find that ignoring the spectrum at higher energies
the tunneling radiation spectrum is coincident with Hawking pure thermal one. So
the tunneling radiation spectrum carries on a correction to Hawking pure thermal
one, and is actually exact.

When l = 0 and a = 0, it is static Swarzschild black hole. From Eq. (26),
Hawking pure thermal spectrum of the black hole is given as follows

Nω = 1

eω/Ts − 1
, (64)

where

Ts = 1

8πM
. (65)

From Eq. (56), the tunneling rate of static Swarzschild black hole can be expressed
as

�s ∼ e−8πMω(1− ω
2M ) = e�Ss

BH . (66)

Through Eq. (66), we can learn that the leading term of the tunneling rate give the
Hawking radiation spectrum. The second term is the correction from the response
of the background geometry to emission. So, when the self-gravitation, energy
conservation and angular momentum conservation are taken into consideration,
the tunneling rate at the event horizon of the black hole is relevant to the change
of Bekenstein-Hawking entropy and the derived radiation spectrum deviates from
pure thermal. So further research indicates that the tunneling radiation spectrum
gives a correction to Hawking pure thermal one, and is actually exact.

Taking all the above research into account, the black hole radiation causes the
space-time background geometry varied, the event horizon of the black hole also
changes with the radiation as result of the self-gravitation, energy conservation
and angular momentum conservation. In other words, when the particle tunnel out,
the event horizon will contract and the two turning points pre- and post emission
are the two points of barrier. The result shows that the tunneling rate at the event
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horizon of the black hole is relevant to the change of Bekenstein- Hawking entropy
and the derived radiation spectrum deviates from pure thermal.
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